Search
  • Stephen Biss

How to Calibrate - Teach an AI - Build the Inverse Logarithmic Calibration Curve


Purpose:

To educate the Court about the Analytical Theory of the 8000C Optical Bench including Emitter, Sample Chamber, Dual Detectors, Inverse Logarithmic relationship, and building the Calibration Curve based on the theory that differing ethanol concentrations have differing % absorption of IR light.

To lay the groundwork for the importance of calibration and re-calibration respecting the reliability of any approved instrument.

To explain the auto-calibration function of the instrument that is run at the factory or the Authorized service Centre.

To lay the groundwork for why changes to the relationship between electrical signals coming off the detector and true indication result in drift in accuracy and precision, i.e. loss of reliability.

Q. And the procedure would involve using that variety of solutions and the reason why they need to use that variety of solutions is because the instrument has to learn what each of those values means. A. Correct. Q. And that creates a calibration curve. A. Well, it creates the data that the instrument uses to generate a calibration curve. Q. I see. Right. Now, in that process of the

data being generated to create the calibration curve.... MR. BISS: And this Your Honour, incidentally, is an excerpt essentially from the same – the same manual, just different pages of the – of the C.M.I.

[From CMI 8000 Calibration Manual]

Q. The indication at page 2 of that document is that different ethanol concentrations are used and each of these has a different absorption percent, from the perspective of the instrument. A. Correct. It reduces the intensity of light that reaches the detector. Q. All right, so just – let’s talk a little bit about how an Intoxilyzer 8000 or Intoxilyzer 8000C works. At one end of the sample chamber there is a light source. In the 5000C it was a light bulb. In the 8000C it is an emitter that emits a pulse. A. Yes.

[See Ontario 8000C Training Aid 2013 pages 55-57 of 238]

Q. Of infrared light. A. Yes. Q. Inside the sample chamber there is either a breath sample or just air or perhaps the sample that’s come from the wet bath simulator for the purposes of a calibration check. A. Yes.

Q. At the other end of the sample chamber there is a detector and the detector reads an electrical signal of final intensity of infrared light coming out of the sample chamber. A. Yes. It measures the intensity – the decrease in the intensity of the signal and converts that to a voltage. Q. So if we know the initial intensity of the

light that is coming from the emitter and we know the decrease in that intensity of the light at the other end of the sample chamber, then we can – an electrical signal is generated and that electrical signal can be translated into a calculation of the – well, first of all, we will know what the ultimate transmittance is of the light.

A. Yes.

Q. In the sense the transmittance as in the light that reaches the final end of the sample chamber, as opposed to the – some of the light is going to be absorbed in the sample chamber by the molecules that are in the sample chamber.

A. The molecules of alcohol, yes. So, if there’s no alcohol present the intensity of light that leaves the light source and that reaches the detector is the same.

Q. Yes.

A. So the relationship is inverse to what we usually expect to see an increase in signal. You actually see a decrease in signal. So the more alcohol that’s present in the sample chamber, the decrease in intensity of light that reaches the detector is the response.

Q. All right.

A. So the more alcohol the more the signal is decreased.

Q. Okay, and the more the alcohol....

A. The higher the concentration of alcohol that’s present, the higher the decrease in the intensity of the light that reaches the detector.

Q. But the signal that comes off of the detector actually has a logarithmic relationship to the concentration of the alcohol in the sample chamber.

A. Yes.

[Note: 1. Inverse relationship 2. Logarithmic]

Q. All right. That’s difficult to get our heads around unless we think in terms of the slide rule. The slide rule is something that some of us used a long time ago in high school. A slide rule uses logarithms. A. Yes. Q. And – anyway. So, the signal passes through the sample chamber and when the signal comes through the sample chamber there’s an electrical signal that’s produced and so during calibration the person who is doing the calibration is entering commands into the Intoxilyzer 8000 or 8000C which then, the software, during an auto calibration sequence in the instrument then generates a calibration curve. A. Essentially, yes. The specific procedure, again, I don’t know what is required, but that essentially is it, yes.

#crossex #calibration

0 views

© 2019 Allbiss Lawdata Ltd. All rights reserved. This is not a government web site.

 

 

For more information respecting this database or to report misuse contact: Allbiss Lawdata Ltd., 303-470 Hensall Circle, Mississauga, Ontario, Canada, L5A 3V4, 905-273-3322. The author and the participants make no representation or warranty  whatsoever as to the authenticity and reliability of the information contained herein.  WARNING: All information contained herein is provided  for the purpose of discussion and peer review only and should not be construed as formal legal advice. The authors disclaim any and all liability resulting from reliance upon such information. You are strongly encouraged to seek professional legal advice before relying upon any of the information contained herein. Legal advice should be sought directly from a properly retained lawyer or attorney. 

WARNING: Please do not attempt to use any text, image, or video that you see on this site in Court. These comments, images, and videos are NOT EVIDENCE. The Courts will need to hear evidence from a properly qualified expert. The author is not a scientist. The author is not an expert. These pages exist to promote discussion among defence lawyers.

 

Intoxilyzer®  is a registered trademark of CMI, Inc. The Intoxilyzer® 5000C is an "approved instrument" in Canada.
Breathalyzer® is a registered trademark of Draeger Safety, Inc., Breathalyzer Division. The owner of the trademark is Robert F. Borkenstein and Draeger Safety, Inc. has leased the exclusive rights of use from him. The Breathalyzer® 900 and Breathalyzer® 900A were "approved instruments" in Canada.
DrugTest® 5000 is also a registered trademark of Draeger Safety, Inc.. DrugTest® 5000 is "approved drug screening equipment" in Canada.
Alcotest® is a registered trademark of Draeger Safety, Inc. The Alcotest® 7410 GLC and 6810 are each an "approved screening device" in Canada.
Datamaster®  is a registered trademark of National Patent Analytical Systems, Inc.  The BAC Datamaster® C  is an "approved instrument" in Canada.