Search
  • Stephen Biss

Reliability: 64- in 2011 Ambient


This is the same Intoxilyzer® 64 with upgraded keyboard and (software) serial number depicted in the blogs of June 16, 17, and 18. These experiments were run in 2011. In this experiment the operator has attached a 50 mg/100mls target alcohol standard to the breath tube to simulate a breath room with 50 mg/100 mls ambient alcohol in the air.

Please note that the instrument in this video will not, on a cold start, sound an alarm and shut down with either 10 or 20 mg/100mls ambient alcohol in the air. This experiment shows that the instrument does not sound an alarm or shut down with 50 mg/100mls of ethyl alcohol placed into the breath tube on start-up:

Rather, the instrument adjusts itself by raising the ambient threshold 50 mg/100mls:

The point is that this instrument does not flag ambient ethyl alcohol beyond a fixed threshold in the way that scientists used to think when the 5000C was first approved in Canada. Rather the instrument adjusts its zero value in accordance with ambient conditions. These are IR machines that float zero.

It is the operator who is ultimately responsible for controlling adverse ambient conditions. The automatic machine ambient fail systems only flag rapid changes in ambient conditions from one air blank to the next, exceeding a threshold change of value of 10 or 19 mg/100mls.

It is therefore not safe to assume that cal check or breath test sequences with no "ambient fail" messages have not been compromised by ambient alcohol or an ambient interferent.

In assessing the impact of this phenomenon please be careful not to fall into the error of equating "reliability" with "accuracy". Many Crowns and government scientists will say: "A raised threshold will NOT elevate subject breath test results, it will reduce them." The defence should concede that assertion. That's not the point. The issue is St-Onge lack of reliability through operator error (and maybe instrument malfunction depending on maintenance/calibration of the threshold), not Carter evidence to the contrary contradicting accuracy. Fluctuating ambient conditions compromise cal. check reliability. If the operator doesn't control properly for this phenomenon, then cal. checks are unreliable. If cal. checks are unreliable then the approved instrument is unreliable. Note that the CFS will likely concede that a cal. check below 90 is as unacceptable as a cal check above 110. The issue is reliability. Lack of reliability through operator error, malfunction, (or lack of maintenance), should negate the 258(1)(c) presumption.

Quaere: Quite apart from operator error in not controlling ambient conditions, if this instrument has not been maintained/serviced for many years, can we count on the calibration of its threshold values? Do they drift? Shouldn't those ambient flag threshold values be annually inspected against known standards in accordance with manufacturer's specifications?

WARNING: These videos and blog comments are NOT EVIDENCE. The author is not an expert. The author is not a scientist. This blog entry is provided to encourage discussion among defence lawyers.

#reliability

3 views

© 2020 Allbiss Lawdata Ltd. All rights reserved. This is not a government web site.

 

 

For more information respecting this database or to report misuse contact: Allbiss Lawdata Ltd., 303-470 Hensall Circle, Mississauga, Ontario, Canada, L5A 3V4, 905-273-3322. The author and the participants make no representation or warranty  whatsoever as to the authenticity and reliability of the information contained herein.  WARNING: All information contained herein is provided  for the purpose of discussion and peer review only and should not be construed as formal legal advice. The authors disclaim any and all liability resulting from reliance upon such information. You are strongly encouraged to seek professional legal advice before relying upon any of the information contained herein. Legal advice should be sought directly from a properly retained lawyer or attorney. 

WARNING: Please do not attempt to use any text, image, or video that you see on this site in Court. These comments, images, and videos are NOT EVIDENCE. The Courts will need to hear evidence from a properly qualified expert. The author is not a scientist. The author is not an expert. These pages exist to promote discussion among defence lawyers.

 

Intoxilyzer®  is a registered trademark of CMI, Inc. The Intoxilyzer® 5000C is an "approved instrument" in Canada.
Breathalyzer® is a registered trademark of Draeger Safety, Inc., Breathalyzer Division. The owner of the trademark is Robert F. Borkenstein and Draeger Safety, Inc. has leased the exclusive rights of use from him. The Breathalyzer® 900 and Breathalyzer® 900A were "approved instruments" in Canada.
DrugTest® 5000 is also a registered trademark of Draeger Safety, Inc.. DrugTest® 5000 is "approved drug screening equipment" in Canada.
Alcotest® is a registered trademark of Draeger Safety, Inc. The Alcotest® 7410 GLC and 6810 are each an "approved screening device" in Canada.
Datamaster®  is a registered trademark of National Patent Analytical Systems, Inc.  The BAC Datamaster® C  is an "approved instrument" in Canada.